The machine learning process From ideation to deployment with Azure Machine Learning

Francesca Lazzeri, PhD – Senior Machine Learning Scientist Lead

@frlazzeri
 aka.ms/AzureMLrepo
 medium.com/@francescalazzeri

Useful Resources:

- ✓ AzureML GitHub: <u>aka.ms/AzureMLrepo</u>
- ✓ Algorithm Cheat Sheet: <u>aka.ms/AlgorithmCheatSheet</u>
- ✓ Deep Learning VS Machine Learning: <u>aka.ms/DeepLearningVSMachineLearning</u>
- ✓ Automated Machine Learning Documentation: <u>aka.ms/AutomatedMLDocs</u>
- ✓ Model Interpretability with Azure ML Service: <u>aka.ms/AzureMLModelInterpretability</u>
- ✓ Azure Machine Learning Service: <u>aka.ms/AzureMLservice</u>
- ✓ Azure Machine Learning Designer: <u>aka.ms/AzureMLdesigner</u>
- ✓ Get started with Azure ML: <u>aka.ms/GetStartedAzureML</u>
- ✓ Azure Notebooks: <u>aka.ms/AzureNB</u>

custom ML

@frlazzeri

There are many jobs & tools involved in production ML

Azure Machine Learning GitHub TensorFlow, PyTorch, sklearn Azure Compute – CPU/GPU/FPGA

Azure Data Lake Azure Data Factory Azure DataBricks Azure SQL Azure DevOps GitHub Azure Kubernetes Service Azure IoT Edge Azure Monitor

ML Engineer

The Machine Learning Process

@frlazzeri

Example - Inventory Optimization

Inventory Optimization

Balancing capital investment constraints or objectives and service-level goals over a large assortment of stock-keeping units (SKUs) while taking demand and supply volatility into account.

Store 1

Store 2

Business Understanding

Ask the right questions
 Define Performance Metrics
 Understand what to do with your data

Understand what to do with your data aka.ms/AlgorithmCheatSheet

Business Understanding

Inventory optimization	Ask the right questions What are the forecasted sales quantities per item per								
Demand plans		What are the forecasted sales quantities per item per store for the next 4 weeks? Using forecasting models such as determining reorder points and economic order quantities can help ensure optimal inventory control. Evaluation metric: MAPE $\frac{100}{N}\sum_{i=1}^{N} \left \frac{y_{i} - \hat{y}_{i}}{y_{i}}\right $							
Forecasts									
Sales history		Using forecasting models such as determining reorder points							
Trends		and acanomic order quantities can belo ensure entimel							
Local events/weather patterns		inventory control.							
	Define Performance	Evaluation metric: MAPE							
Data-driven stock,	Metrics	Irain Validation lest							
inventory, ordering		$100 \sum^{N} y_i - \hat{y}_i $							
Predict inventory positions and distribution		$\overline{N} \sum_{i=1}^{N} \frac{y_i}{y_i}$							
Fraud detection									
Market basket analysis									
	Understand what to do with your data	Regression – Time Series Forecasting approach							
Omni-channel shopping experience with machine learning									

Data Acquisition & Understanding

Data Architecture
 Data preprocessing
 Feature Engineering

Data

POS data

Stores

Information about the 45 stores, indicating the type and size of store

Features

Contains additional data related to the store, department, and regional activity for the given dates.

- Store the store number
- Date the week
- Temperature average temperature in the region
- Fuel_Price cost of fuel in the region
- MarkDown1-5 anonymized data related to promotional markdowns.
- RDPI Real Disposable Personal Income
- Unemployment the unemployment rate

Sales

Historical weekly sales data, which covers 3 years:

- Store the store number
- Dept the department number
- Date the week
- Weekly_Sales sales for the given department in the given store

Inventory management architecture

Find and validate if enough data is available

Gather external data to improve model performance

Add future dates to dataset to get prediction

Find and Validate Data

- Get store id, item id, time, and quantities of items sold
- Validate there is data for at least a year
- Fill in missing gaps in data

Starting Dataset									
	ID1	ID2	time	value					
	Ē			i					
	1	2	11/13/2010 12:00:00 AM	130					
	1	2	11/20/2010 12:00:00 AM	222					
	1	2	11/27/2010 12:00:00 AM	166					
	1	2	12/4/2010 12:00:00 AM	174					
	1	2	12/11/2010 12:00:00 AM	236					
	1	2	12/18/2010 12:00:00 AM	350					
	1	2	12/25/2010 12:00:00 AM	216					
	1	2	1/1/2011 12:00:00 AM	230					
	1	2	1/8/2011 12:00:00 AM	268					
	1	2	1/15/2011 12:00:00 AM	332					
	1	2	1/22/2011 12:00:00 AM	280					
	1	2	1/29/2011 12:00:00 AM	214					
	1	2	2/5/2011 12:00:00 AM	220					
	1	2	2/12/2011 12:00:00 AM	276					
	А	~	0 140 10044 40 00 00 AN 4	240					

Add RDPI Index to data

Add external data to improve model performance

Res	Resulting Dataset										
	ID1	ID2	Time	Value	RDPI						
		Γ.		.	h.						
	1	2	9/21/2019 20:07	168	11753.2						
	1	2	9/14/2019 20:07	126	11753.2						
	1	2	9/7/2019 20:07	208	11753.2						
	1	2	8/31/2019 20:07	210	11753.2						
	1	2	8/24/2019 20:07	160	11696.6						
	1	2	8/17/2019 20:07	176	11696.6						
	1	2	8/10/2019 20:07	170	11696.6						
	1	2	8/3/2019 20:07	212	11696.6						
	1	2	7/27/2019 20:07	164	11725.6						
	1	2	7/20/2019 20:07	174	11725.6						
	1	2	7/13/2019 20:07	238	11725.6						
	1	2	7/6/2019 20:07	178	11725.6						
	1	2	6/29/2019 20:07	160	11725.6						
	1	2	6/22/2019 20:07	144	11713						
	1	2	6/15/2019 20:07	268	11713						
	1	2	6/8/2019 20:07	222	11713						

Feature Engineering: Create Data Features

Ż

Date and Time features: year, month, week of month, etc.

Season/Holiday features: New Year, U.S. Labor Day, U.S. Black Friday, and Christmas

Fourier features to capture seasonality

Lag features: these are values at prior time steps (weeks)

Demo

We are using C# but you can do these steps in any language!

Process Data: Add Weeks to Predict

Add default values for the number of weeks to predict to the forecasting data collection.

```
C#
```

```
var forcastingDataItem = new ForecastingData
{
    ID1 = storeID1,
    ID2 = itemID2,
    Time = latestDate,
    Value = 0,
    RDPI = latestRdpi,
    DatesInWeek = new List<DateTime>()
};
```


Create Time Features: Extract Concept of Time

Date and Time features: year, month, week of month, etc.

```
C#
```

```
foreach (var item in forecastData)
```

```
{
```

```
item.Year = item.time.Year;
item.Month = item.time.Month;
item.WeekOfMonth = Convert.ToInt32(Math.Ceiling(item.time.Day / 7.0));
item.WeekOfYear = Convert.ToInt32(Math.Ceiling(item.Time.DayOfYear / 7.0));
```


Create Holiday Features: Extract Holidays from Time

Season/Holiday features: New Year, U.S. Labor Day, U.S. Black Friday, and Christmas.

```
// 4th Friday in November
```

```
item.IsBlackFriday = item.DatesInWeek.Any(date => date.Month == 11 && date.DayOfWeek == DayOfWeek.Friday &&
date.Day > 22 && date.Day < 29);
// 1st Monday in September
item.IsUsLaborDay = item.DatesInWeek.Any(date => date.Month == 9 && date.DayOfWeek == DayOfWeek.Monday &&
date.Day < 8);
// 25th of December
item.IsChristmasDay = item.DatesInWeek.Any(date => date.Month == 12 && date.Day == 25);
// 1st of January
item.IsUsNewYearsDay = item.DatesInWeek.Any(date => date.Month == 1 && date.Day == 1);
```


Create Fourier Features: Capture Up/Down Pattern

Fourier features to capture seasonality

```
C#
```

```
var seasonality = 52;
foreach (var item in forecastData)
{
    item.FreqCos1 = Math.Cos(item.WeekOfYear * 2 * Math.PI * 1 / seasonality);
    item.FreqSin1 = Math.Sin(item.WeekOfYear * 2 * Math.PI * 1 / seasonality);
    ...
    item.FreqCos4 = Math.Cos(item.WeekOfYear * 2 * Math.PI * 4 / seasonality);
    item.FreqSin4 = Math.Sin(item.WeekOfYear * 2 * Math.PI * 4 / seasonality);
```


Create Lag Features: Capture Prior Weeks to Current

Lag features: these are values at prior time steps

C#

```
for (int i = forecastData.Count-1; i >= forecastData.Count; i--)
{
    forecastData[i].Lag1 = forecastData[i - 1].value;
    forecastData[i].Lag2 = forecastData[i - 2].value;
    ...
    forecastData[i].Lag26 = forecastData[i - 26].value;
```


ID1	ID2	time	value	RDPI	year	month	weekofmonth	weekofyear	USNewYearsDay	USLaborDay	USThanksgiving Day	 FreqCos1	FreqSin1	FreqCos2	FreqSin2	•••	lag1	lag2	lag3
	Т.			h.,	1	lutitu	III.				I.						. dtal		. ժա
1	2	2013-01- 05T00:00:00Z	5.308268	11638.5	2013	1	1	1	True	False	False	0.464723	0.885456	-0.568065	0.822984		4.941642	5.123964	5.023881
1	2	2013-01- 12T00:00:00Z	5.365976	11709.1	2013	1	2	2	False	False	False	0.354605	0.935016	-0.748511	0.663123		4.941642	5.123964	5.023881
1	2	2013-01- 19T00:00:00Z	5.214936	11709.1	2013	1	3	3	False	False	False	0.239316	0.970942	-0.885456	0.464723		4.941642	5.123964	5.023881
1	2	2013-01- 26T00:00:00Z	5.049856	11709.1	2013	1	4	4	False	False	False	0.120537	0.992709	-0.970942	0.239316		4.941642	5.123964	5.023881
1	2	2013-02- 02T00:00:00Z	4.912655	11709.1	2013	2	1	5	False	False	False	0	1	-1	0		4.941642	5.123964	5.023881
1	2	2013-02- 09T00:00:00Z	5.337538	11877.2	2013	2	2	6	False	False	False	-0.120537	0.992709	-0.970942	-0.239316		4.941642	5.123964	5.023881
1	2	2013-02- 16T00:00:00Z	5.298317	11877.2	2013	2	3	7	False	False	False	-0.239316	0.970942	-0.885456	-0.464723		4.941642	5.123964	5.023881
1	2	2013-02- 23T00:00:00Z	5.214936	11877.2	2013	2	4	8	False	False	False	-0.354605	0.935016	-0.748511	-0.663123		4.941642	5.123964	5.023881
1	2	2013-03- 02T00:00:00Z	5.087596	11877.2	2013	3	1	9	False	False	False	-0.464723	0.885456	-0.568065	-0.822984		4.941642	5.123964	5.023881
1	2	2013-03- 09T00:00:00Z	5.384495	12214.1	2013	3	2	10	False	False	False	-0.568065	0.822984	-0.354605	-0.935016		4.941642	5.123964	5.023881

Resulting Dataset:

ID1	ID2	time	value	RDPI	year	month	weekofmonth	weekof
	Ι.		litte	h	1	lutitu	III.	
1	2	2013-01- 05T00:00:00Z	5.308268	11638.5	2013	1	1	1
1	2	2013-01- 12T00:00:00Z	5.365976	11709.1	2013	1	2	2
1	2	2013-01- 19T00:00:00Z	5.214936	11709.1	2013	1	3	3
1	2	2013-01- 26T00:00:00Z	5.049856	11709.1	2013	1	4	4
1	2	2013-02- 02T00:00:00Z	4.912655	11709.1	2013	2	1	5
1	2	2013-02- 09T00:00:00Z	5.337538	11877.2	2013	2	2	6
1	2	2013-02- 16T00:00:00Z	5.298317	11877.2	2013	2	3	7
1	2	2013-02- 23T00:00:00Z	5.214936	11877.2	2013	2	4	8
1	2	2013-03- 02T00:00:00Z	5.087596	11877.2	2013	3	1	9
1	2	2013-03- 09T00:00:00Z	5.384495	12214.1	2013	3	2	10

Modeling

Selecting the "Right" Algorithm to Train Your Model

Azure Machine Learning

Authoring tools: Automated ML, Azure Machine designer, Notebooks

Assets: Datasets, Experiments, ML Workflow Pipelines, Models, Deployments

Management: Compute, Datastores, Workspaces

Deploying

Operationalize Your Model

Deployment with Azure Machine Learning

Making models available to external customers and/or other teams and stakeholders in your company.

Other teams in your company can use them, send data to them and get their predictions, which are in turn populated back into the company systems to increase training data quality and quantity.

Companies will start building and deploying higher numbers of machine learning models in production and master robust and repeatable ways to move models from development environments into business operations systems.

Demo: Build, Test and Deploy Your Model

The Machine Learning Process

@frlazzeri

Useful Resources:

- ✓ AzureML GitHub: <u>aka.ms/AzureMLrepo</u>
- ✓ Algorithm Cheat Sheet: <u>aka.ms/AlgorithmCheatSheet</u>
- ✓ Deep Learning VS Machine Learning: <u>aka.ms/DeepLearningVSMachineLearning</u>
- ✓ Automated Machine Learning Documentation: <u>aka.ms/AutomatedMLDocs</u>
- ✓ Model Interpretability with Azure ML Service: <u>aka.ms/AzureMLModelInterpretability</u>
- ✓ Azure Machine Learning Service: <u>aka.ms/AzureMLservice</u>
- ✓ Azure Machine Learning Designer: <u>aka.ms/AzureMLdesigner</u>
- ✓ Get started with Azure ML: <u>aka.ms/GetStartedAzureML</u>
- ✓ Azure Notebooks: <u>aka.ms/AzureNB</u>

Coming next...

ODSC East • Boston

April 16th, 2020 • 14:00 PM Boston Hynes • Convention Center

Training and Operationalizing Interpretable Machine Learning Models

https://opendatascience.com/training-and-operationalizing-interpretable-machine-learningmodels/

Training and Operationalizing Interpretable Machine Learning Models

Abstract:

Al offers companies the possibility to transform their operations: from Al applications able to predict and schedule equipment's maintenance, to intelligent R&D applications able to estimate the success of future drugs, until HR Al-powered tools able to enhance the hiring process and employee retention strategy. However, in order to be able to leverage this opportunity, companies have to learn how to successfully build, train, test, and push hundreds of machine learning models in production, and to move models from development to their production environment in ways that are robust, explainable, and repeatable.

Nowadays data scientists and developers have a much easier experience when building Albased solutions through the availability and accessibility of data and open-source machine learning frameworks. However, this process becomes a lot more complex when they need to think about model deployment and pick the best strategy to scale up to a production-grade system.

Thank You

Francesca Lazzeri, PhD – Senior Machine Learning Scientist Lead

@frlazzeri
 aka.ms/AzureMLrepo
 medium.com/@francescalazzeri

